f021grdpw[001-003]: Wave growth in deep water

Purpose

The purpose of this test is to verify fetch-limited deep water wave growth for 3 different wind speeds.

Situation

Fetch-limited deep water wave growth caused by a constant uniform wind blowing perpendicularly off a long and straight coastline is considered. The wind velocities are $U_{10} = 10$, 20 and 30 m/s for case f021grdpw001, f021grdpw002 and f021grdpw003 respectively. Ambient currents are absent.

Comparison

Model results are compared with expressions of Kahma and Calkoen (1992, generalized), Wilson (1965) and Pierson-Moskowitz (1964). Comparison is made for the range of non-dimensional fetch of 10 to 10,000,000. The fetch and results are scaled with gravitational acceleration g and friction velocity, U*, defined as

$$U^{*} = \sqrt{C_{D}U_{10}}$$
(F2.1)

where C_D is defined according to Wu (1982) and U_{10} is wind velocity at 10m above sea level.

The non-dimensional fetch is defined as

$$X^* = \frac{gX}{\left(U^*\right)^2} \tag{F2.2}$$

where X is fetch.

The model results under comparison are non-dimensional total energy and non-dimensional peakfrequency as a function of non-dimensional fetch. Non-dimensional energy is defined here as

$$E^* = \frac{g^2 m_0}{\left(U^*\right)^4} \tag{F2.3}$$

The non-dimensional peak frequency is defined as

$$f_p^* = \frac{f_p U^*}{g}$$
 (F2.4)

where f_p is the peak frequency.

Default model commands

Model commands for $U_{10} = 10$ m/s (f021grdpw001)

	COMPUTATIONAL GRID																	
	1D/2D		XPC		YPC	YPC		ALPO	ALPC		XLENC		1	YLENC				
01	ID)			0				0		100		(0				
02	ID	D 90			0			0			1000		0					
03	ID		800		0)		0		10 200		(0				
04	ID		10 000		0				0		150 000			0				
05	ID	D		0	0						750 000			0				
06	ID		750 00	0	0				0		50 000 000		0					
	ΔX	ΔY		DIR1	DIR1		DIR2		Δθ		LOW		FHIGH		MSC			
01	1	0		0°		360°		10°		0.3).300		4.0		27			
02	10	0		0°	0°			10°		0.2	200		3.0		28			
03	100	0		0°	0°			10°		0.1	120 2.		2.0		30			
04	100	0		0°	360°			10°		0.0	070		1.0		28			
05	500	0 0		0°	36		360°		10°		0.060		1.0		30			
06	10 000	10 000 0		0°	360°			10°		0.0	.060 1		1.0		30			
	PHYSIC	S		•														
	GEN	BRE	AK	AK FRIC		TRIADS		JAD	WCAP		REFRAC	2	FSHIFT		SETUP			
	3 off		off		off		on		on		off		off		off			
	BOUND	ARY CC	NDITIO	ONS														
	TYPE	BOU	C/V	P/R	R				NAME OF FILE									
01	-	-	_	-														
02	side	W	con	read bour	read boundary from file				'f021grdpw001_02.abs'									
03	side	W	con	read bour	read boundary from file			'f021grdpw001_03.abs'										
04	side	W	con	read bour	read boundary from file			'f021grdpw001_04.abs'										
05	side	W	read bour	read boundary from file			'f021grdpw001_05.abs'											
06	side	W	con	read bour	read boundary from file				'f021grdpw001_06.abs'									
	BOTTO	M:		WIND:				CURRENT:				WATER LEVEL:						
	'f021 grdp	001.bot'		U ₁₀ : 10 m	U_{10} : 10 m/s θ_{W} : 0°					- -					-			

f021grdpw Wave growth in deep water **Model commands for** U_{10} = 20 m/s (f021grdpw002)

	COMPUTATIONAL GRID																	
	1D/2D	XPC				YPC				ALPC			XLENC			YLENC		
01	ID			0		0		1		0	0		100			0		
02	ID	ID				0				0			1000		0			
03	ID	D				0)		0		10 200			0			
04	ID	D			0	0)		0			150 000			0		
05	ID				00	0				0			750 000			0		
06	ID			750 000		0				0	0		50 000 000		0 0			
	ΔX	ΔY				DIR1		DIR2		$\Delta \theta$		FL	OW	FHIGH			MSC	
01	1	0		0°		0°	360°			10°		0.2	250 3.0		3.0		26	
02	10	0				0°		360°		10° 0		0.2	200 2.		2.0		24	
03	100	0				0°		360°		10° 0		0.1	00 2.		2.0		29	
04	100	0				0°)° 36		360°		10° 0.)50 1.		1.0		31	
05	500	0				0°		360°		10°	10° (.033		1.0		36	
06	10 000	0 0				0°		360°		10° 0		0.0	.033 1		1.0		36	
	PHYSICS																•	
	GEN BREA			AK FRIC		TRIADS		QL	JAD) WCAP		REFRAC	1	FSHI	FT	SETUP		
	3	3 off		off		off		on		on		off		off		off		
	BOUND	ARY	Y CO	NDITI	ON	IS												
	TYPE	PE BOU C/V J					P/R				NAME OF FILE							
01	-	-		-		-				-								
02	side	W		con		read boun	ıdary	from file		'f021grdpw002_02.abs'								
03	side	W		con		read boundary from file				'f021grdpw002_03.abs'								
04	side	W		con		read boun	ıdary	from file		'f021grdpw002_04.abs'								
05	side	W	W con			read boundary from file				'f021grdpw002_05.abs'								
06	side W con					read boundary from file				'f021gı	dpw002	.abs'						
	BOTTO	M:				WIND:				CURRENT:				WATER LEVEL:				
	'f021 grdp	.bot'			U10: 20 m	/s	$\mid \theta_{W}: 0^{\circ}$		-				-					

	f021grdpw	Wave g	rowth in	deep	water
Model commands for $U_{10} = 30$ m/s (f021grdpw	/003)				

	COMPUTATIONAL GRID																	
	1D/2D	/2D XPC					YPC	/РС		ALPO	ALPC		XLENC			YLENC		
01	ID			0		0				0	0		100			0		
02	ID	D		90		0				0		1000		0				
03	ID	ID		800		0				0		10 200			0			
04	ID	ID			0		0			0 150 00			150 000	0 000 0				
05	ID	D			150 000			0			0			750 000			0	
06	ID			750 000		0				0	0		50 000 000		0		-	
	ΔX	ΔY			DIR1		DIR2		$\Delta \theta$	$\Delta \theta$ F		FLOW		FHIGH		MSC		
01	1		0	0°			360°		10° 0		0.2	200		3.0		28		
02	10	0				0°		360°		10°	10° 0.1		2.0		2.0		31	
03	100	0				0°		360°		10°	10° 0.0)90 1.		1.0		25	
04	100		0		0°		360°			10°		0.0	.055		1.0		31	
05	500	0				0°		360°		10°	10° 0		033		1.0		36	
06	10 000	000 0				0°		360°		10°	10° 0		025 1.		1.0		38	
	PHYSIC	S															•	
	GEN BRE.			AK FRIC		FRIC	TRIADS		QL	JAD	WCAP		REFRAC]	FSHIFT		SETUP	
	3 of		off	f off		f off			on		on		off		off		off	
	BOUND	ARY	Y CO	NDITI	ON	VS												
	TYPE	BO	U	C/V		P/R				NAME	OF FIL							
01	-	_		-		-				-								
02	side	W		con		read boun	ndary from file			'f021grdpw003_02.abs'								
03	side	W		con		read boundary from file				'f021grdpw003_03.abs'								
04	side	W		con		read boun	idary	from file		'f021grdpw003_04.abs'								
05	side	W		con read bou			ndary from file			'f021grdpw003_05.abs'								
06	side W con					read boundary from file				'f021grdpw003_06.abs'								
	BOTTO	M:				WIND:				CURRENT:				WATER LEVEL:				
	'f021grdp003.bot'					U10: 30 m	/s	$\mid \theta_{W}: 0^{\circ}$		-				-				

References

Kahma, K.K. and C.J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves, J. Phys. Oceanogr., 22, 1389-1405

Wilson, B.W., 1965: Numerical prediction of ocean waves in the North Atlantic for December 1959, *Deutsch. Hydrogr. Z.*, 18, No. 3, p. 114-130

Pierson, W.J. and L. Moskowitz, 1964: A proposed spectral form for fully-developed wind seas based on the similarity theory of S.A. Kitaigorodskii, J. Geophys. Res., 69, No. 24, 5181-5190

Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res., 87, C12, pp. 9704-9706

Acknowledgements

-