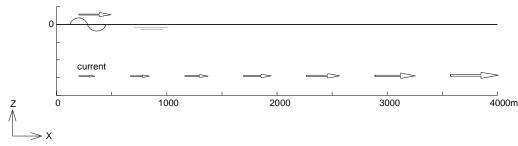
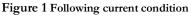
a031curnt[001-004]: Following, Opposing and Slanting current

Purpose

The purpose of these tests is to validate wave propagation in the presence of currents (currentinduced refraction and shoaling).

Situation


A deep water region of constant depth, 4000 m long and infinitely wide is considered (essentially a one-dimensional situation; Figure 1). For all cases monochromatic, uni-directional waves propagate in positive x-direction. The up-wave boundary is at x = 0. The incident wave height H_i and period T_i


are 1 m and 10 s respectively.

For cases a031curnt001 and a031curnt002 the wave direction is parallel to the x-axis. For case a031curnt001 the current direction is in positive x-direction. The current velocity increases linearly from 0 to 2m/s (as in Figure 11, following current and Figure 2, opposing current). For case a031curnt002 the current direction is in negative x-direction (opposing current) and increases linearly from 0 to -2 m/s in positive x-direction.

For case a031curnt003 the wave direction at the up-wave boundary is 120° . For a031curnt004 the wave direction at the up-wave boundary is 60° . For these cases the current is parallel to the x-axis and in positive x-direction (as in Figure 1). The current velocity increases linearly from 0 to 2 m/s in positive x-direction.

For all four cases wind is absent. The water is infinitely deep.

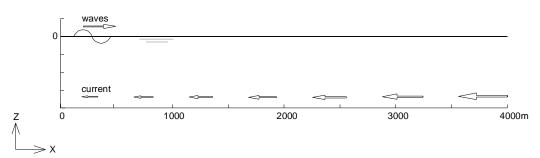


Figure 2 Opposing current condition

Comparison

Model results for the following current and the opposing current cases are compared with an analytical solution. The analytical solution is calculated with (Phillips, 1977; Jonsson, 1993):

a031curnt Following, opposing and slanting current

$$\frac{H^2}{H_i^2} = \frac{c_i^2}{c(c+2U)} \qquad \text{where} \qquad \frac{c}{c_i} = \frac{1}{2} + \frac{1}{2} \left(1 + 4\frac{U}{c_i}\right)^{\frac{1}{2}}$$
(A3.1)

For the slanting current cases, the analytical solutions for the wave direction and the wave height, using Snel's law: $\sin\theta/c = \text{constant}$, are (see e.g., Hedges, 1987; Jonsson, 1993):

$$\begin{cases} \theta = \arccos\left(\frac{gk_i \cos(\theta_i)}{[\omega - Uk_i \cos(\theta_i)]^2}\right) \\ H = H_i \sqrt{\frac{\sin(2\theta_i)}{\sin(2\theta)}} \end{cases}$$
(A3.2)

Comparison is made for wave height, wave period and wave direction.

	COMP	UTA	TION	AL G	RID												
	1D/2D	1D/2D XPC				YPC			ALPC X			XLEN	XLENC		YLENC		
	2D 0				0			0 16			16000	16000		400	4000		
	AX AY		AY		DIR1	DIR1		DIR2		$\Delta \theta$		FLOW		FHIGH		MSC	
001	400 40			30°		150°		2°		0.05	0.05		0.25		40		
002	400 40			30°	30°		150°		2° (0.05		0.25		40		
003	640 40			60°	60°		140°		1° (0.05		0.25		40		
004	640 40		10°			70°		1°	1° 0		5	0.25			40		
	PHYSIC	PHYSICS															
	GEN BRE.		AK	K FRIC		TRIADS		AD	WCAP		REFRAC		FSHIFT		SETUP		
	off off		off		off	of	f	off		on		on		on c		off	
	BOUNI	BOUNDARY CONDITIONS															
	TYPE	BC	OU C/V		P/R	R SHAPE		PE/M	ſΕ	DSPR		HS	PER		PDI	R DD	
001	side	S		con	par	Ga	Gauss 0.01			power		1	10	90°		500	
002	side	S		con	par	Ga	Gauss 0.01			power		1	10		90°	500	
003	side	S		con	par	Ga	Gauss 0.01			power		1	10		120°	500	
004	side	ie S		con	par	Gauss 0.01		peak		power		1	10		60°	500	
	BOTTOM:				WINI	WIND:				CURRENT:				WATER LEVEL:			
001	'a031cu	'a031curnt001.bot'				-				'a031curnt001.cur'							
002	'a031cu	'a031curnt002.bot'				-				'a031curnt002.cur'				-			
003	'a031cu	'a031curnt003.bot'				_ 'a031c					curnt003.cur''						
004	'a031cu	'a031curnt004.bot'					a031curnt004.cur'										

Default model commands

References

Phillips, O.M, 1977: The dynamics of the upper ocean, 2nd edition, Cambridge University Press, 336 p.

Jonsson, I.G., 1993: The Sea, Ocean Engineering Science, 9, Part A

Hedges, T.S., 1987: Combination of waves and currents: an introduction, Proc. Instn. Civ. Engrs., Part 1, 82,567-585

Acknowledgements