a021shoal[001]: Shoaling

Purpose

The purpose of this test is to validate depth-induced shoaling

Situation

An infinitely long plane beach with parallel depth contours (slope 1:200) is considered. The x-axis is normal to the depth contours (see Figure 1). At a water depth of 20m, monochromatic, unidirectional waves enter the model area. At the up-wave boundary the incoming waves propagate at an angle of 30° relative to the positive x-axis. The distance of the up-wave boundary to the waterline is 4000 m. The incident wave height H_i and period T_i are 1 m and 10 s respectively. Ambient currents and wind are absent.

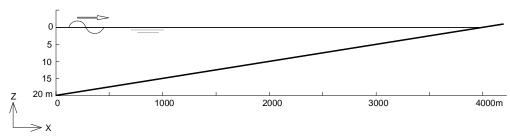


Figure 1 Shoaling on a infinitely long beach (normal wave incidence)

Comparison

Model results are compared with the analytical solution along a line perpendicular to the depth contours. This is calculated with (see Mei, 1983):

$$\frac{H^2}{H_i^2} = \frac{c_{g,i}}{c_g} \tag{A2.1}$$

Comparison is made for wave height, wave period and wave direction.

Default model commands

	COMP	COMPUTATIONAL GRID																	
	1D/2D XPC					2	ALPC				XLENC			YLENC					
001	2D 0			0			0			0			16000			4000			
	ΔX ΔY					DIR1		DIR2		$\Delta\theta$		FLC	FLOW		FHIGH		MSC		
001	800		40	40		80°		100°		0.25°		0.05		0.25			40		
	PHYSICS																		
	GEN		BREAK		-	FRIC		TRIADS		AD	WCAP		REFRA	.C FSHI		IFT S		SETUP	
	off o		off	off		ff of		ff of		off			on		off		off		
	BOUNDARY CONDITIONS																		
	TYPE BOU		U	C/V		P/R	SHAPE		PE/ME		DSPR		HS	PER		PDIR		DD	
001	side	side S		con		par	Gau	ss 0.01 peak		power		1		10		90°		500	
	BOTTO	M:				WIND:			CURREN		RENT:	ENT:		WATER LEVEL:					
001	'a021sho	'a021shoal001.bot'					-				-			-					

References

Mei, C.C., 1983: The applied dynamics of ocean surface waves, Wiley, New York, 740 p.

Acknowledgements

-