a011refra[001]: Refraction

Purpose

The purpose of this test is to validate depth-induced refraction.

Situation

An infinitely long plane beach with parallel depth contours (slope 1:200) is considered. The x-axis is normal to the depth contours (see Figure 1). At a water depth of 20m, monochromatic, unidirectional waves enter the model area. At the up-wave boundary the incoming waves propagate at an angle of 30° relative to the positive x-axis. The distance of the up-wave boundary to the water line is 4000 m. The incident wave height H_i and period T_i are 1 m and 10 s respectively. Ambient currents and wind are absent.

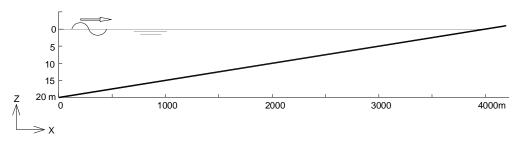


Figure 1 Refraction on a infinitely long beach (30° incident wave direction)

Comparison

Comparison is being made with the analytical solution along a line perpendicular to the depth contours. This is calculated with (see Mei, 1983):

$$\frac{H^2}{H_i^2} = \frac{c_{g,i}}{c_g} \frac{\cos(\theta_i)}{\cos(\theta)} \tag{A1.1}$$

where the wave direction θ is calculated with Snell's law:

$$\frac{\sin \theta_i}{c_i} = \frac{\sin \theta}{c} \tag{A1.2}$$

Comparison is made for wave height, wave period and wave direction.

Default model commands

	COMPU	COMPUTATIONAL GRID																
	1D/2D XPC				YPC	C		ALPC			XLENC			YLENC				
001	2D		0			0		0				20000		4000		0		
	ΔX		ΔY	ΔΥ		DIR1		DIR2		$\Delta\theta$ F		FLC)W	FHIGH			MSC	
	800		40	40		80°		130°		0.5°		0.05		0.25			40	
	PHYSIC	PHYSICS																
	GEN		BREAK			FRIC		TRIADS		D	WCAP		REFRA	C FSHI		IFT	FT SETU	
	off o		off	off		off		off		off off			on	off		off		f
	BOUNDARY CONDITIONS																	
	TYPE	BOU		C/V		P/R	SHA	APE	PE/ME		DSPR		HS	PER		PDIR		DD
001	side	side S		con		par Gaus		ss 0.01	peak		power		1	10		120°		500
	BOTTO	BOTTOM:				WIND:				CURRENT:				WATER LEVEL:				
001	'a011refr	a00	1.bot'			-				-			_					

References

Mei, C.C., 1983: The applied dynamics of ocean surface waves, Wiley, New York, 740 p.

Acknowledgements

_